Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Cancer Res ; 83(18): 3145-3158, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37404061

ABSTRACT

HER2 mutations drive the growth of a subset of breast cancers and are targeted with HER2 tyrosine kinase inhibitors (TKI) such as neratinib. However, acquired resistance is common and limits the durability of clinical responses. Most HER2-mutant breast cancers progressing on neratinib-based therapy acquire secondary mutations in HER2. It is unknown whether these secondary HER2 mutations, other than the HER2T798I gatekeeper mutation, are causal to neratinib resistance. Herein, we show that secondary acquired HER2T862A and HER2L755S mutations promote resistance to HER2 TKIs via enhanced HER2 activation and impaired neratinib binding. While cells expressing each acquired HER2 mutation alone were sensitive to neratinib, expression of acquired double mutations enhanced HER2 signaling and reduced neratinib sensitivity. Computational structural modeling suggested that secondary HER2 mutations stabilize the HER2 active state and reduce neratinib binding affinity. Cells expressing double HER2 mutations exhibited resistance to most HER2 TKIs but retained sensitivity to mobocertinib and poziotinib. Double-mutant cells showed enhanced MEK/ERK signaling, which was blocked by combined inhibition of HER2 and MEK. Together, these findings reveal the driver function of secondary HER2 mutations in resistance to HER2 inhibition and provide a potential treatment strategy to overcome acquired resistance to HER2 TKIs in HER2-mutant breast cancer. SIGNIFICANCE: HER2-mutant breast cancers acquire secondary HER2 mutations that drive resistance to HER2 tyrosine kinase inhibitors, which can be overcome by combined inhibition of HER2 and MEK.


Subject(s)
Breast Neoplasms , Quinolines , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Receptor, ErbB-2/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Mutation , Mitogen-Activated Protein Kinase Kinases/genetics , Quinolines/pharmacology , Quinolines/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
2.
Cancer Immunol Res ; 10(7): 829-843, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35561311

ABSTRACT

The MYC oncogene is frequently amplified in triple-negative breast cancer (TNBC). Here, we show that MYC suppression induces immune-related hallmark gene set expression and tumor-infiltrating T cells in MYC-hyperactivated TNBCs. Mechanistically, MYC repressed stimulator of interferon genes (STING) expression via direct binding to the STING1 enhancer region, resulting in downregulation of the T-cell chemokines CCL5, CXCL10, and CXCL11. In primary and metastatic TNBC cohorts, tumors with high MYC expression or activity exhibited low STING expression. Using a CRISPR-mediated enhancer perturbation approach, we demonstrated that MYC-driven immune evasion is mediated by STING repression. STING repression induced resistance to PD-L1 blockade in mouse models of TNBC. Finally, a small-molecule inhibitor of MYC combined with PD-L1 blockade elicited a durable response in immune-cold TNBC with high MYC expression, suggesting a strategy to restore PD-L1 inhibitor sensitivity in MYC-overexpressing TNBC.


Subject(s)
Membrane Proteins/genetics , Proto-Oncogene Proteins c-myc/metabolism , Triple Negative Breast Neoplasms , Animals , B7-H1 Antigen , Cell Line, Tumor , Epigenetic Repression , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immune Evasion , Mice , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
3.
Cancer Cell ; 39(8): 1099-1114.e8, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34171264

ABSTRACT

Activating mutations in HER2 (ERBB2) drive the growth of a subset of breast and other cancers and tend to co-occur with HER3 (ERBB3) missense mutations. The HER2 tyrosine kinase inhibitor neratinib has shown clinical activity against HER2-mutant tumors. To characterize the role of HER3 mutations in HER2-mutant tumors, we integrate computational structural modeling with biochemical and cell biological analyses. Computational modeling predicts that the frequent HER3E928G kinase domain mutation enhances the affinity of HER2/HER3 and reduces binding of HER2 to its inhibitor neratinib. Co-expression of mutant HER2/HER3 enhances HER2/HER3 co-immunoprecipitation and ligand-independent activation of HER2/HER3 and PI3K/AKT, resulting in enhanced growth, invasiveness, and resistance to HER2-targeted therapies, which can be reversed by combined treatment with PI3Kα inhibitors. Our results provide a mechanistic rationale for the evolutionary selection of co-occurring HER2/HER3 mutations and the recent clinical observations that HER3 mutations are associated with a poor response to neratinib in HER2-mutant cancers.


Subject(s)
Breast Neoplasms/genetics , Gain of Function Mutation , Quinolines/pharmacology , Receptor, ErbB-2/genetics , Receptor, ErbB-3/genetics , Aminopyridines/administration & dosage , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Female , Humans , Mice, Nude , Molecular Docking Simulation , Molecular Dynamics Simulation , Morpholines/administration & dosage , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/administration & dosage , Protein Multimerization , Quinolines/administration & dosage , Quinolines/chemistry , Quinolines/metabolism , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/chemistry , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/chemistry , Receptor, ErbB-3/metabolism , Trastuzumab/pharmacology , Xenograft Model Antitumor Assays
4.
Clin Cancer Res ; 27(15): 4379-4396, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34011560

ABSTRACT

PURPOSE: FGFR1 overexpression has been associated with endocrine resistance in ER+ breast cancer. We found FGFR1 localized in the nucleus of breast cancer cells in primary tumors resistant to estrogen suppression. We investigated a role of nuclear FGFR1 on gene transcription and antiestrogen resistance. EXPERIMENTAL DESIGN: Tumors from patients treated with letrozole were subjected to Ki67 and FGFR1 IHC. MCF7 cells were transduced with FGFR1(SP-)(NLS) to promote nuclear FGFR1 overexpression. FGFR1 genomic activity in ER+/FGFR1-amplified breast cancer cells ± FOXA1 siRNA or ± the FGFR tyrosine kinase inhibitor (TKI) erdafitinib was examined by chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq). The nuclear and chromatin-bound FGFR1 interactome was investigated by mass spectrometry (MS). RESULTS: High nuclear FGFR1 expression in ER+ primary tumors positively correlated with post-letrozole Ki67 values. Nuclear FGFR1 overexpression influenced gene transcription and promoted resistance to estrogen suppression and to fulvestrant in vivo. A gene expression signature induced by nuclear FGFR1 correlated with shorter survival in the METABRIC cohort of patients treated with antiestrogens. ChIP-Seq revealed FGFR1 occupancy at transcription start sites, overlapping with active transcription histone marks. MS analysis of the nuclear FGFR1 interactome identified phosphorylated RNA-Polymerase II and FOXA1, with FOXA1 RNAi impairing FGFR1 recruitment to chromatin. Treatment with erdafitinib did not impair nuclear FGFR1 translocation and genomic activity. CONCLUSIONS: These data suggest nuclear FGFR1 contributes to endocrine resistance by modulating gene transcription in ER+ breast cancer. Nuclear FGFR1 activity was unaffected by FGFR TKIs, thus supporting the development of treatment strategies to inhibit nuclear FGFR1 in ER+/FGFR1 overexpressing breast cancer.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Estrogen Receptor Modulators/therapeutic use , Receptor, Fibroblast Growth Factor, Type 1/physiology , Transcription, Genetic/physiology , Breast Neoplasms/chemistry , Cell Nucleus , Female , Humans , Receptors, Estrogen/analysis , Tumor Cells, Cultured
5.
Nat Commun ; 11(1): 5488, 2020 10 30.
Article in English | MEDLINE | ID: mdl-33127913

ABSTRACT

The 17q23 amplicon is associated with poor outcome in ER+ breast cancers, but the causal genes to endocrine resistance in this amplicon are unclear. Here, we interrogate transcriptome data from primary breast tumors and find that among genes in 17q23, PRR11 is a key gene associated with a poor response to therapeutic estrogen suppression. PRR11 promotes estrogen-independent proliferation and confers endocrine resistance in ER+ breast cancers. Mechanistically, the proline-rich motif-mediated interaction of PRR11 with the p85α regulatory subunit of PI3K suppresses p85 homodimerization, thus enhancing insulin-stimulated binding of p110-p85α heterodimers to IRS1 and activation of PI3K. PRR11-amplified breast cancer cells rely on PIK3CA and are highly sensitive to PI3K inhibitors, suggesting that PRR11 amplification confers PI3K dependence. Finally, genetic and pharmacological inhibition of PI3K suppresses PRR11-mediated, estrogen-independent growth. These data suggest ER+/PRR11-amplified breast cancers as a novel subgroup of tumors that may benefit from treatment with PI3K inhibitors and antiestrogens.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Estrogen Receptor Modulators/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proteins/genetics , Proteins/metabolism , Signal Transduction/drug effects , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Class I Phosphatidylinositol 3-Kinases/metabolism , Disease Models, Animal , Drug Resistance, Neoplasm , Estrogen Antagonists/pharmacology , Estrogen Receptor Modulators/therapeutic use , Estrogens , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Insulin , Mice, Nude , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Xenograft Model Antitumor Assays
6.
Cancer Cell ; 37(4): 496-513, 2020 04 13.
Article in English | MEDLINE | ID: mdl-32289273

ABSTRACT

Estrogen receptor-positive (ER+) breast cancer is the most common breast cancer subtype. Treatment of ER+ breast cancer comprises interventions that suppress estrogen production and/or target the ER directly (overall labeled as endocrine therapy). While endocrine therapy has considerably reduced recurrence and mortality from breast cancer, de novo and acquired resistance to this treatment remains a major challenge. An increasing number of mechanisms of endocrine resistance have been reported, including somatic alterations, epigenetic changes, and changes in the tumor microenvironment. Here, we review recent advances in delineating mechanisms of resistance to endocrine therapies and potential strategies to overcome such resistance.


Subject(s)
Antineoplastic Agents, Hormonal/pharmacology , Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm , Receptors, Estrogen/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Disease Management , Female , Humans , Tumor Microenvironment
8.
Cancer Cell ; 37(2): 183-199.e5, 2020 02 10.
Article in English | MEDLINE | ID: mdl-31978326

ABSTRACT

We developed neratinib-resistant HER2-mutant cancer cells by gradual dose escalation. RNA sequencing identified TORC1 signaling as an actionable mechanism of drug resistance. Primary and acquired neratinib resistance in HER2-mutant breast cancer patient-derived xenografts (PDXs) was also associated with TORC1 hyperactivity. Genetic suppression of RAPTOR or RHEB ablated P-S6 and restored sensitivity to the tyrosine kinase inhibitor. The combination of the TORC1 inhibitor everolimus and neratinib potently arrested the growth of neratinib-resistant xenografts and organoids established from neratinib-resistant PDXs. RNA and whole-exome sequencing revealed RAS-mediated TORC1 activation in a subset of neratinib-resistant models. DNA sequencing of HER2-mutant tumors clinically refractory to neratinib, as well as circulating tumor DNA profiling of patients who progressed on neratinib, showed enrichment of genomic alterations that converge to activate the mTOR pathway.


Subject(s)
Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm/drug effects , Mechanistic Target of Rapamycin Complex 1/genetics , Quinolines/pharmacology , Breast Neoplasms/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Humans , Mechanistic Target of Rapamycin Complex 1/drug effects , Protein Kinase Inhibitors/pharmacology , Receptor, ErbB-2/drug effects , Receptor, ErbB-2/genetics , Signal Transduction/drug effects
9.
Nat Commun ; 10(1): 1373, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30914635

ABSTRACT

Using an ORF kinome screen in MCF-7 cells treated with the CDK4/6 inhibitor ribociclib plus fulvestrant, we identified FGFR1 as a mechanism of drug resistance. FGFR1-amplified/ER+ breast cancer cells and MCF-7 cells transduced with FGFR1 were resistant to fulvestrant ± ribociclib or palbociclib. This resistance was abrogated by treatment with the FGFR tyrosine kinase inhibitor (TKI) lucitanib. Addition of the FGFR TKI erdafitinib to palbociclib/fulvestrant induced complete responses of FGFR1-amplified/ER+ patient-derived-xenografts. Next generation sequencing of circulating tumor DNA (ctDNA) in 34 patients after progression on CDK4/6 inhibitors identified FGFR1/2 amplification or activating mutations in 14/34 (41%) post-progression specimens. Finally, ctDNA from patients enrolled in MONALEESA-2, the registration trial of ribociclib, showed that patients with FGFR1 amplification exhibited a shorter progression-free survival compared to patients with wild type FGFR1. Thus, we propose breast cancers with FGFR pathway alterations should be considered for trials using combinations of ER, CDK4/6 and FGFR antagonists.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/drug therapy , Circulating Tumor DNA/genetics , Drug Resistance, Neoplasm/genetics , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 2/genetics , Aminopyridines/administration & dosage , Aminopyridines/pharmacology , Animals , Antineoplastic Agents, Hormonal/administration & dosage , Antineoplastic Agents, Hormonal/pharmacology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cyclin D1/metabolism , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Drug Resistance, Neoplasm/drug effects , Female , Fulvestrant/administration & dosage , Fulvestrant/pharmacology , High-Throughput Nucleotide Sequencing , Humans , MCF-7 Cells , Mice , Mutation , Naphthalenes/pharmacology , Piperazines/pharmacology , Progression-Free Survival , Proportional Hazards Models , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Purines/administration & dosage , Purines/pharmacology , Pyrazoles/pharmacology , Pyridines/pharmacology , Quinolines/pharmacology , Quinoxalines/pharmacology , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptors, Estrogen/metabolism , Signal Transduction , Xenograft Model Antitumor Assays
11.
Clin Cancer Res ; 25(1): 277-289, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30314968

ABSTRACT

PURPOSE: We examined the role of ERBB2-activating mutations in endocrine therapy resistance in estrogen receptor positive (ER+) breast cancer. EXPERIMENTAL DESIGN: ERBB2 mutation frequency was determined from large genomic databases. Isogenic knock-in ERBB2 mutations in ER+ MCF7 cells and xenografts were used to investigate estrogen-independent growth. Structural analysis was used to determine the molecular interaction of HER L755S with HER3. Small molecules and siRNAs were used to inhibit PI3Kα, TORC1, and HER3. RESULTS: Genomic data revealed a higher rate of ERBB2 mutations in metastatic versus primary ER+ tumors. MCF7 cells with isogenically incorporated ERBB2 kinase domain mutations exhibited resistance to estrogen deprivation and to fulvestrant both in vitro and in vivo, despite maintaining inhibition of ERα transcriptional activity. Addition of the irreversible HER2 tyrosine kinase inhibitor neratinib restored sensitivity to fulvestrant. HER2-mutant MCF7 cells expressed higher levels of p-HER3, p-AKT, and p-S6 than cells with wild-type HER2. Structural analysis of the HER2 L755S variant implicated a more flexible active state, potentially allowing for enhanced dimerization with HER3. Treatment with a PI3Kα inhibitor, a TORC1 inhibitor or HER3 siRNA, but not a MEK inhibitor, restored sensitivity to fulvestrant and to estrogen deprivation. Inhibition of mutant HER2 or TORC1, when combined with fulvestrant, equipotently inhibited growth of MCF7/ERBB2 V777L xenografts, suggesting a role for TORC1 in antiestrogen resistance induced by ERBB2 mutations. CONCLUSIONS: ERBB2 mutations hyperactivate the HER3/PI3K/AKT/mTOR axis, leading to antiestrogen resistance in ER+ breast cancer. Dual blockade of the HER2 and ER pathways is required for the treatment of ER+/HER2 mutant breast cancers.


Subject(s)
Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , Estrogen Receptor alpha/genetics , Receptor, ErbB-2/genetics , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Estrogen Receptor alpha/antagonists & inhibitors , Estrogens/metabolism , Female , Fulvestrant/adverse effects , Fulvestrant/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Heterografts , Humans , MCF-7 Cells , Mechanistic Target of Rapamycin Complex 1/genetics , Mice , Mutation/drug effects , Phosphatidylinositol 3-Kinases/genetics , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Quinolines/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-3/genetics , Synthetic Lethal Mutations/drug effects , Synthetic Lethal Mutations/genetics
12.
Clin Cancer Res ; 25(2): 771-783, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30274983

ABSTRACT

PURPOSE: The phase III ExteNET trial showed improved invasive disease-free survival in patients with HER2+ breast cancer treated with neratinib versus placebo after trastuzumab-based adjuvant therapy. The benefit from neratinib appeared to be greater in patients with ER+/HER2+ tumors. We thus sought to discover mechanisms that may explain the benefit from extended adjuvant therapy with neratinib.Experimental Design: Mice with established ER+/HER2+ MDA-MB-361 tumors were treated with paclitaxel plus trastuzumab ± pertuzumab for 4 weeks, and then randomized to fulvestrant ± neratinib treatment. The benefit from neratinib was evaluated by performing gene expression analysis for 196 ER targets, ER transcriptional reporter assays, and cell-cycle analyses. RESULTS: Mice receiving "extended adjuvant" therapy with fulvestrant/neratinib maintained a complete response, whereas those treated with fulvestrant relapsed rapidly. In three ER+/HER2+ cell lines (MDA-MB-361, BT-474, UACC-893) but not in ER+/HER2- MCF7 cells, treatment with neratinib induced ER reporter transcriptional activity, whereas treatment with fulvestrant resulted in increased HER2 and EGFR phosphorylation, suggesting compensatory reciprocal crosstalk between the ER and ERBB RTK pathways. ER transcriptional reporter assays, gene expression, and immunoblot analyses showed that treatment with neratinib/fulvestrant, but not fulvestrant, potently inhibited growth and downregulated ER reporter activity, P-AKT, P-ERK, and cyclin D1 levels. Finally, similar to neratinib, genetic and pharmacologic inactivation of cyclin D1 enhanced fulvestrant action against ER+/HER2+ breast cancer cells. CONCLUSIONS: These data suggest that ER blockade leads to reactivation of ERBB RTKs and thus extended ERBB blockade is necessary to achieve durable clinical outcomes in patients with ER+/HER2+ breast cancer.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Receptor, ErbB-2/metabolism , Receptors, Estrogen/metabolism , Animals , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Biomarkers, Tumor , Breast Neoplasms/pathology , Cell Line, Tumor , Chemotherapy, Adjuvant , Disease Models, Animal , Female , Fulvestrant/administration & dosage , Humans , Immunohistochemistry , Mice , Quinolines/administration & dosage , Treatment Outcome , Xenograft Model Antitumor Assays
13.
Clin Cancer Res ; 24(15): 3483-3485, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29802101

ABSTRACT

Neratinib was recently approved by the FDA for extended adjuvant treatment of HER2+ breast cancer. The ExteNET trial showed improvement in invasive disease-free survival (iDFS) in the neratinib arm compared with placebo. The benefit was more pronounced in patients with estrogen receptor-positive (ER+)/HER2+ tumors, suggesting bidirectional cross-talk between the ER and HER pathways. Clin Cancer Res; 24(15); 3483-5. ©2018 AACRSee related article by Singh et al., p. 3486.


Subject(s)
Breast Neoplasms , Quinolines , Female , Humans , Receptor, ErbB-2 , United States Food and Drug Administration
14.
Br J Pharmacol ; 173(19): 2859-79, 2016 10.
Article in English | MEDLINE | ID: mdl-27448286

ABSTRACT

BACKGROUND AND PURPOSE: Pulmonary hypertension (PH) and pulmonary fibrosis (PF) are life threatening cardiopulmonary diseases. Existing pharmacological interventions have failed to improve clinical outcomes or reduce disease-associated mortality. Emerging evidence suggests that stem cells offer an effective treatment approach against various pathological conditions. It has been proposed that their beneficial actions may be mediated via secretion of paracrine factors. Herein, we evaluated the therapeutic potential of conditioned media (CM) from adipose stem cells (ASCs) against experimental models of PH and PF. EXPERIMENTAL APPROACH: Monocrotaline (MCT) or bleomycin (Bleo) was injected into male Sprague-Dawley rats to induce PH or PF respectively. A subset of MCT and Bleo animals were treated with ASCs or CM. Echocardiographic and haemodynamic measurements were performed at the end of the study. Lung and heart tissues were harvested for RNA, protein and histological measurements. KEY RESULTS: CM treatment attenuated MCT-induced PH by improving pulmonary blood flow and inhibiting cardiac remodelling. Further, histological studies revealed that right ventricular fibrosis, pulmonary vessel wall thickness and pericyte distribution were significantly decreased by CM administration. Likewise, CM therapy arrested the progression of PF in the Bleo model by reducing collagen deposition. Elevated expression of markers associated with tissue remodelling and inflammation were significantly reduced in both PF and PH lungs. Similar results were obtained with ASCs administration. CONCLUSIONS AND IMPLICATIONS: Our study indicates that CM treatment is as effective as ASCs in treating PH and PF. These beneficial effects of CM may provide an innovative approach to treat cardiopulmonary disorders.


Subject(s)
Adipocytes/metabolism , Culture Media, Conditioned/pharmacology , Hypertension, Pulmonary/drug therapy , Pulmonary Fibrosis/drug therapy , Stem Cells/metabolism , Animals , Bleomycin/administration & dosage , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/pathology , Male , Monocrotaline/administration & dosage , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Rats , Rats, Sprague-Dawley
15.
Clin Exp Metastasis ; 33(5): 461-73, 2016 06.
Article in English | MEDLINE | ID: mdl-27055649

ABSTRACT

A significant proportion of breast cancer patients harbor clinically undetectable micrometastases at the time of diagnosis. If left untreated, these micro-metastases may lead to disease relapse and possibly death. Hence, there is significant interest in the development of novel anti-metastatic agents that could also curb the growth of pre-established micrometastases. Like primary tumor, the growth of metastases also is driven by angiogenesis. Although the role of cysteine protease Cathepsin L (CTSL) in metastasis associated tumor cell functions such as migration and invasion is well recognized, its role in tumor angiogenesis remains less explored. The present study examines the contribution of CTSL to breast cancer angiogenesis and evaluates the anti-angiogenic efficacy of CTSL inhibitor KGP94. CTSL semi-quantitative RT-PCR analysis on breast tissue panels revealed significant upregulation of CTSL in breast cancer patients which strongly correlated with increased relapse and metastatic incidence and poor overall survival. Preclinically, CTSL ablation using shRNA or KGP94 treatment led to a significant reduction in MDA-MB-231 tumor cell induced angiogenesis in vivo. In-vitro assessments demonstrated a significant decrease in various angiogenic properties such as endothelial cell sprouting, migration, invasion, tube formation and proliferation in the presence of KGP94. Microarray analyses revealed a significant upregulation of cell cycle related genes by CTSL. Western blot analyses further confirmed upregulation of members of the cyclin family by CTSL. Collectively, these data indicate that CTSL is an important contributor to tumor angiogenesis and that the CTSL inhibition may have therapeutic utility in the treatment of breast cancer patients.


Subject(s)
Breast Neoplasms/drug therapy , Cathepsin L/genetics , Neoplasm Micrometastasis/drug therapy , Neovascularization, Pathologic/drug therapy , Adult , Aged , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cathepsin L/antagonists & inhibitors , Cell Line, Tumor , Cell Movement/drug effects , Female , Human Umbilical Vein Endothelial Cells , Humans , Middle Aged , Neoplasm Invasiveness/pathology , Neoplasm Invasiveness/prevention & control , Neoplasm Micrometastasis/genetics , Neoplasm Micrometastasis/pathology , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Thiosemicarbazones/administration & dosage , Thiourea/administration & dosage , Thiourea/analogs & derivatives
16.
Int J Cancer ; 138(11): 2665-77, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-26757413

ABSTRACT

It is estimated that approximately 90% of patients with advanced prostate cancer develop bone metastases; an occurrence that results in a substantial reduction in the quality of life and a drastic worsening of prognosis. The development of novel therapeutic strategies that impair the metastatic process and associated skeletal adversities is therefore critical to improving prostate cancer patient survival. Recognition of the importance of Cathepsin L (CTSL) to metastatic dissemination of cancer cells has led to the development of several CTSL inhibition strategies. The present investigation employed intra-cardiac injection of human PC-3ML prostate cancer cells into nude mice to examine tumor cell dissemination in a preclinical bone metastasis model. CTSL knockdown confirmed the validity of targeting this protease and subsequent intervention studies with the small molecule CTSL inhibitor KGP94 resulted in a significant reduction in metastatic tumor burden in the bone and an improvement in overall survival. CTSL inhibition by KGP94 also led to a significant impairment of tumor initiated angiogenesis. Furthermore, KGP94 treatment decreased osteoclast formation and bone resorptive function, thus, perturbing the reciprocal interactions between tumor cells and osteoclasts within the bone microenvironment which typically result in bone loss and aggressive growth of metastases. These functional effects were accompanied by a significant downregulation of NFκB signaling activity and expression of osteoclastogenesis related NFκB target genes. Collectively, these data indicate that the CTSL inhibitor KGP94 has the potential to alleviate metastatic disease progression and associated skeletal morbidities and hence may have utility in the treatment of advanced prostate cancer patients.


Subject(s)
Bone Neoplasms/genetics , Cathepsin L/genetics , Osteoclasts/metabolism , Prostatic Neoplasms/genetics , Animals , Bone Neoplasms/pathology , Bone Neoplasms/secondary , Bone Resorption/genetics , Bone Resorption/pathology , Cathepsin L/antagonists & inhibitors , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Male , Mice , Neoplasm Metastasis , Osteoclasts/pathology , Prostatic Neoplasms/pathology , Thiosemicarbazones/administration & dosage , Thiourea/administration & dosage , Thiourea/analogs & derivatives , Tumor Burden/genetics , Xenograft Model Antitumor Assays
17.
Bioorg Med Chem ; 23(21): 6974-92, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26462052

ABSTRACT

Upregulation of cathepsin L in a variety of tumors and its ability to promote cancer cell invasion and migration through degradation of the extracellular matrix suggest that cathepsin L is a promising biological target for the development of anti-metastatic agents. Based on encouraging results from studies on benzophenone thiosemicarbazone cathepsin inhibitors, a series of fourteen benzoylbenzophenone thiosemicarbazone analogues were designed, synthesized, and evaluated for their inhibitory activity against cathepsins L and B. Thiosemicarbazone inhibitors 3-benzoylbenzophenone thiosemicarbazone 1, 1,3-bis(4-fluorobenzoyl)benzene thiosemicarbazone 8, and 1,3-bis(2-fluorobenzoyl)-5-bromobenzene thiosemicarbazone 32 displayed the greatest potency against cathepsin L with low IC50 values of 9.9 nM, 14.4 nM, and 8.1 nM, respectively. The benzoylbenzophenone thiosemicarbazone analogues evaluated were selective in their inhibition of cathepsin L compared to cathepsin B. Thiosemicarbazone analogue 32 inhibited invasion through Matrigel of MDA-MB-231 breast cancer cells by 70% at 10 µM. Thiosemicarbazone analogue 8 significantly inhibited the invasive potential of PC-3ML prostate cancer cells by 92% at 5 µM. The most active cathepsin L inhibitors from this benzoylbenzophenone thiosemicarbazone series (1, 8, and 32) displayed low cytotoxicity toward normal primary cells [in this case human umbilical vein endothelial cells (HUVECs)]. In an initial in vivo study, 3-benzoylbenzophenone thiosemicarbazone (1) was well-tolerated in a CDF1 mouse model bearing an implanted C3H mammary carcinoma, and showed efficacy in tumor growth delay. Low cytotoxicity, inhibition of cell invasion, and in vivo tolerability are desirable characteristics for anti-metastatic agents functioning through an inhibition of cathepsin L. Active members of this structurally diverse group of benzoylbenzophenone thiosemicarbazone cathepsin L inhibitors show promise as potential anti-metastatic, pre-clinical drug candidates.


Subject(s)
Antineoplastic Agents/chemical synthesis , Cathepsin L/antagonists & inhibitors , Cysteine Proteinase Inhibitors/chemical synthesis , Thiosemicarbazones/chemistry , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Benzophenones/chemistry , Binding Sites , Cathepsin B/antagonists & inhibitors , Cathepsin B/metabolism , Cathepsin L/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Cysteine Proteinase Inhibitors/pharmacology , Cysteine Proteinase Inhibitors/therapeutic use , Drug Design , Female , Human Umbilical Vein Endothelial Cells , Humans , Inhibitory Concentration 50 , Isomerism , Kinetics , Mammary Neoplasms, Animal/drug therapy , Mice , Molecular Docking Simulation , Protein Structure, Tertiary , Thiosemicarbazones/pharmacology , Thiosemicarbazones/therapeutic use , Transplantation, Heterologous
18.
Pharmacol Ther ; 155: 105-16, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26299995

ABSTRACT

Proteolytic enzymes may serve as promising targets for novel therapeutic treatment strategies seeking to impede cancer progression and metastasis. One such enzyme is cathepsin L (CTSL), a lysosomal cysteine protease. CTSL upregulation, a common occurrence in a variety of human cancers, has been widely correlated with metastatic aggressiveness and poor patient prognosis. In addition, CTSL has been implicated to contribute to cancer-associated osteolysis, a debilitating morbidity affecting both life expectancy and the quality of life. In this review, we highlight the mechanisms by which CTSL contributes to tumor progression and dissemination and discuss the therapeutic utility of CTSL intervention strategies aimed at impeding metastatic progression and bone resorption.


Subject(s)
Cathepsin L/metabolism , Neoplasms/metabolism , Animals , Cathepsin L/antagonists & inhibitors , Cysteine Proteinase Inhibitors/therapeutic use , Humans , Neoplasms/drug therapy
19.
Clin Exp Metastasis ; 30(7): 891-902, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23748470

ABSTRACT

Metastasis remains the major cause of therapeutic failure, poor prognosis and high mortality in breast and prostate cancer patients. Aberrant microenvironments including hypoxia and acidic pH are common features of most solid tumors that have been long associated with enhanced metastasis and poor patient outcomes. Novel approaches to reduce metastatic incidences and improve overall survival of cancer patients clearly are needed. The crucial role of Cathepsin L (CTSL) in the dissemination of tumor cells has led to the development of novel cathepsin L inhibition strategies. The present study evaluated the ability of KGP94, a small molecule inhibitor of CTSL, to impair the metastatic phenotype of prostate (PC-3ML) and breast (MDA-MB-231) cancer cells both under normal and aberrant microenvironmental conditions. To assess the role of CTSL in hypoxia and acidosis triggered metastasis associated cell functions, secreted CTSL levels were determined under conditions pertinent to the tumor microenvironment. Acute exposures to hypoxic or acidic conditions significantly elevated secreted CTSL levels either through an increase in intracellular CTSL levels or through activation of lysosomal exocytosis or both, depending on the tumor type. Increases in CTSL secretion closely paralleled enhanced tumor cell migration and invasion suggesting that CTSL could be an essential factor in tumor microenvironment triggered metastasis. Importantly, KGP94 treatment led to marked attenuation of tumor cell invasion and migration under both normal and aberrant microenvironmental conditions suggesting that it may have significant utility as an anti-metastatic agent.


Subject(s)
Breast Neoplasms/pathology , Cathepsin L/antagonists & inhibitors , Neoplasm Metastasis/prevention & control , Prostatic Neoplasms/pathology , Thiosemicarbazones/pharmacology , Thiourea/analogs & derivatives , Tumor Microenvironment/drug effects , Breast Neoplasms/enzymology , Cell Hypoxia , Cell Line, Tumor , Female , Humans , Male , Prostatic Neoplasms/enzymology , Thiourea/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...